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Abstract

In practical engineering, it is inevitable that a system éstyrbed by noise signals. Unfortunately,
H./H filtering may fail to detect some faults when the noise disttion matrix are the same as
the fault distribution matrix. In this paper, it is shown thtae dynamic feedback gain of a dynamic
filter introduces additional zeros to the filter, and both fitter poles and the additional zeros can be
assigned arbitrarily. In order to attenuate band-limiteises, the zero assignment technique is used,
and an optimal dynamic fault detection filtering approachrisposed by locating the zeros to the noise
frequencies and optimizing the poles. Compared to otheamym filter design approaches, the zero
assignment technique gives a better trade-off between design freedom and computation costs. As
shown in the simulation, a better noise attenuation and ttection performance have been obtained.
The zero assignment in multivariable fault detection filesign would be the main contribution of this

paper.

Index Terms

Robust Filtering, Zero Assignment, Fault Detection, Fastirier Transformation

Manuscript received November 6, 2007, revised January 688 2and June xx, 2008, respectively. This work was supported
by the Engineering and Physical Sciences Research ColtR8RC) under grant EP/C015185/1 and China NSF (60828007).

X.Dai is with the Control Systems Centre, University of Mhaster, Manchester, M60 1QD, UK and also with the Southwest
University, Chongging, China (e-mail: xuewu.dai@ postignr@anchester.ac.uk)

Z.Gao is presently with the School of Electric Engineeringd aAutomation, Tianjin University (e-mail: zhiwe-
gac@public.tpt.tj.cn)

T.Breikin and H.Wang are with the School of Electrical an@dEtonic Engineering, University of Manchester, M60 1QD,
UK (e-mail: t.breikin@manchester.ac.uk hong.wang@ maesiehr.ac.uk)

September 22, 2008 DRAFT



REVISED PAPER FOR IEEE TRANS. ON SIGNAL PROCESSING, FEB 2D&0 2

. INTRODUCTION

The fault detection filter problem can be formulated as aimasion problem where system outputs
are estimated and certain robustness and sensitivity mpeaiftce must be satisfied. During the last two
decades, the robustness of a fault detection filter has bexemtaal theme in the development of fault
detection and isolation (FDI) system (e.qg., [1], [2], [3}].[[5], [6]), and a variety of approaches have
been proposed, such as UlOs (Unknown Input Observers) [@m#n filters [8], [9], filters with error
covariance assignment (ECA) [10], robust filters [11], [1H],, filtering [13] by means of a set of Riccati
equations [14], [15] or a set of linear matrix inequation$i(k) [16] or LMIs with weighting functions
[6], [17], Ho/H, filtering [16], [18], [19] and stochastic filtering [20]. ThE, filter minimises theH,
norm of the residual transfer function matrix under the agstion that the noises have known power
spectral densitiesH, filters are good at dealing with deterministic bounded disiaces caused by
model uncertainties in order to guarantee some robustrexésrmance. The guaranteed performance,
however, may be very conservative, as it is only optimisedtlie worst-case [6]. SimilarlyH_ norm
is used to enhance the effects of faults by maximising themrmim (singular) value of the fault transfer
function matrix.

It is noted that most of the existing fault detection filteessé been simply confined in traditional static
filters [2], [15], [16], [21]. Here, the ternstatic filter is used to denote the classic Kalman/Luenberger
filter, in which a constant gain is used to filter the residughal. It is well known that the nonunique
solution to the gain matrix brings the freedom to design atinggd filter. However, the static filter is
able to shift the poles only, but its zeros are invariant. A& performance depends not only on poles,
but also on positions of zeros, the zero invariance progerposes a limitation on the performance of
disturbance attenuation.

Therefore, it is a natural idea to introduce additional dyits into filters for modifying the zeros.
In order to distinguish from classic filters, the tedgynamic filteris used, in which a dynamic system
is employed to feedback the residual signal. Comparing ¢osthatic filters with only one gain matrix,
dynamic filters provide more design freedom, and preserits &dvantages and challenges.

Some preliminary works have been done on dynamic filters tHmitattention is mainly on the poles
assignment. PIO (Proportional Integral Observer) and PXR@portional Multiple Integral Observer)
are discussed in [22], [23]. In [24], a dynamic observer gieshethod is proposed as a dual of control
design for the state estimation. A similar work is the Ligs&ch/IO [7], where two dynamic compensators

are introduced to tackle Lipschitz nonlinearities. It isrthonoting that, all the reports on dynamic filter
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(observer) design ignored the additional zeros introdumgdhe additional dynamics. The extra free
parameters provided by the dynamic filters were determioedhly by optimisation algorithms. From
the view point of system performance, the poles are insafiidior achieving an optimal performance. It
is felt that the advantages of taking zeros into account &vbeltwofold: 1) it is more possible to attenuate
the disturbance further if the filter zeros are close to tistudbance frequency; 2) the specification of zeros
puts more constraints on the free parameters and dimintkleesearch space such that the computation
burden is reduced.

Although the multivariable system zeros were first propdsgdRosenbrock over thirty years ago, the
system zeros study received relatively less attention emetpto the poles research. For more information
on system zeros, please see [25], [26], [27]. To the best okoawledge, there have been no known
results of utilizing the zero assignment technique to desidault detection filter.

Different from all the reported results on dynamic filter iges this paper aims to establish a zero
assignment approach for dynamic filter design and do sysierstaidy on its properties. Based on the
well-established dynamic state feedback controller adeglge properties of filter zeros, the possibility of
zeros assignment are studied in section Il and lll. In sacki§ a detailed design procedure is given.
An application to fault detection of a multivariable systamd its results are illustrated in section V.
It has been shown that the zero assignment is possible ordyriamic filters and a better disturbance

attenuation performance can be achieved.

[I. PROBLEM FORMULATION
Consider a completely controllable and observable coatislLTI multivariable system

z(t) = Az(t) + Bu(t)
y(t) = Cux(t)+ Dul(t)

(1)

wherex € R"” is the statex € RP the input,y € R” the output { > p) and A € R"*", B € R"*P,
C e R™"™, D € R"*P, a faulty system can be presented as [2]:
@(t) = Ax(t) + Bu(t) + By f(t) + Bad(t)
y(t) = Cx(t) + Du(t) + Ds f(t) + Dgd(t)

(2)

where f(t) € R/, d(t) € R? are the general fault vector and disturbance vector, réispac B,(By),
Dq(Dy) are disturbance(fault) distribution matricé$t) is a general disturbance vector due to exogenous

signals, linearisation or parameter uncertainties. Fstaimce, model uncertainties can be presented as:
d(t) = AAz(t) + ABu(t) 3)
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Without loss of generalityd(t) is assumed as a quasi-stationary process with both deistimiand

stochastic components:

d(t) = s(t) + h(t) *n(t) (4)

wheres(t) is a deterministic bounded disturbance with band-limitedcsrum,n(¢) a white noisej(t)
the impulse response of a band-pass filter having the sitélad ass(¢) and+ denotes the convolution
product. Thush(t) xn(t) is a band-limited stationary stochastic signal (coloret&oandd(t) is quasi-
stationary and band-limited.

The fault distribution matrice®;, D can be determined according to which faults are to be detecte

For sensor faults, they are

By =0
(5)
Dy =1,
For actuator faults, they are
By=B
(6)
D;=D

For both the disturbance/fault free system (1) and cordigiestem (2), anth-order dynamic filter

will be used throughout this paper with:

2(t) = Kiz(t) + Kor(t) @)
v(t) = Ksz(t) + Kyr(t)
and
z(t) = Az(t) + Bu(t) + v(t) @)
§(t) = Ci(t) + Du(t)

wherez € R™ is thedynamic feedback state vecterc R” the output of dynamic feedback, and

r(t) =y(t) —9(t) 9)
is the residual signal. The basic concept of robust faukctetn filter is to detecyf (¢) from the residual
signal.r(t) also works as a correction term to reduce the negative effl tod(¢).

The block diagram of the filtering problem is depicted in EigThis dynamic filter has the similar
forward model (8) as the classic static filter. The obviou$edince between the static filter and the
dynamic filter is the feedback path: the real coefficient tamisgain matrix/<' in the static filter is
replaced with a dynamic system (7). This new dynamic syst@noffers more freedom which will be
used to assign zeros. Thansfer function matriXTFM) of the dynamic feedback system (7) relating
to v is given by

H(s) = K3z(sI — K;) 'Ky + K4 (10)
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Feedback Part

Feedback |
Lo | Ly | Gain
u() v > Estimator r®
> SYStem ” (Forward Part) —>
|u()

Fig. 1. Structure of the filter problem

Note that, in static filters, the feedback gain is a real coieffit constant matri¥< without frequency
complex variables, which leads its TFM is a constant matik. Hence, the static filter does not change
the frequency characteristics of the correction tet(it). In dynamic filters, however, the feedback part
is a dynamic system (7)with TFM (10) with more freedom. Farthore, it can been seen that a static
filter is a particular case of dynamic filters when settiiig = 0, Ko = 0 and K3 = 0.

By connecting the dynamic feedback (7) and the forward [@rttbe overall dynamics of the dynamic

filter can be rewritten in an augment form:

<x> A -K4C K3 <w> B
)= + u
z -K;C K; z 0

K4
+ (y — Du) (12)
K,
z
g=[C 0] + Du

Defining e(t) = z(t) — &(t) and subtracting (8) from the disturbance/fault corruptgstesm (2) yield

(o)~ | e x| Co)

B, — K4Dy a(t) + By — K4Dy £0) (12)
Kng K2Df
_ e(t)
r(t) = [C 0] <Z(t)> + Ddd(t) + fo(t)

It can be seen that the residual signél) depends both on the disturbanti¢) and the faultf(¢). Due
to the existence ofi(¢), the fault detection performance may be considerable degrdt is essential to

attenuate the effects ef(¢) in r(¢) and enhance the sensitivity oft) to f(t).
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Equation (12) can be rewritten in a compact form:

Z(t) = AZ(t) + Byd(t) + Bf f(t) 13)
r(t) = CF(t) + Dyd(t) + Dy f(t)
where
N A-K,C -K
F=["(t) T (@), A= ! g
K,C K,
N B, — K,Dy - B; - K,D;
Bd = ; - )
K>Dy K,D;
5:[0 0}, Dy=Dy, Dy=Dy

There are various methods to design the dynamic filter pasam&’, Ks, K3, K4, such as eigen-
structure assignment [21], and dual controller design @ggr [24], [7]. In this paper, in order to get the
desired fault detection performance, we study the praggedf the dynamic filter zeros first, and propose

an approach utilizing the zero assignment methodology.

Ill. TFMs oFDYNAMIC FILTER

It can be seen from (13) thatt) is not affected by the system inputt), as the process dynamics are
canceled in the observer. However, bgift) andd(t) contribute to non-zere(t). Assuming the initial

conditions are zeros-transforming (13) gives the TFM relating(t) to r(¢)
Ga(s) = C(sI—A)"'By+ Dy - (14)
Similarly, the TFM relatingf(¢) to r(t) is given by
Gy(s) = C(sI—A)"'By+ Dy (15)
The whole dynamics of the dynamic filter can be expressed as:
r(s) = Gy(s)f(s) + Ga(s)d(s) (16)

It can be seen clearly from (16) that, due to the existenc& of, the residuat(¢) is nonzero even when

there is no fault. For a successful fault detection, it issatial to makeG,(s) small and enlargéf(s).
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A. Poles of Dynamic Filters

From the simplified expression (13) of the dynamic filter aisdTiFMs, one can see that the stability
of the dynamic filter is determined by the mateik According to linear system theory, the poles of the
filter (13) are the roots of the characteristic polynomilat(sI — A) = 0. It follows that the complete
set of poles coincides with the eigenvalues of the matixThe dynamic filter is stable if and only if
all the eigenvalues ofl are in the left halfs-plane.

It is worthy noting that, because of the importance of polesst filter design approaches (e.qg.,
eigenstructure assignment) in literature concerned orptsitions of poles and ignored the zeros. We
will analyze the zeros of the dynamic filter and assign th@gday placing appropriate values to some

free parameters.

B. Zeros of Dynamic Filter

During the last three decades, considerable research kasdo@e on defining zeros (called transmis-
sion zeros or invariant zeros) and deriving their propsrti@éenerally, the transmission zeros are defined
in terms of TFM [28]. The transmission zeros are the complemlioers such that the rank of the TFM
is locally reduced. It has been shown thatgifs a zero, then there exists some non zero proportional
et input vector such that its propagating through the systebidsked [25]. In this paper, this property
will be used to attenuate the propagationdd$) in (16). First of all, the disturbance zeros are defined
in an analogous way as the definition of transmission zeros.

Definition 1 (disturbance zeros of the actual sysjethe disturbance zeros of the plant (2) are these
transmission zeros of the TFM relating the disturbai@g to the system outpuj(t). That is the set of

complex number such thatG,(s) loses rank locally
Z1 = {s| rank G4(s) < min(r,d)} 17)

wherer, d are the dimension of the residual and disturbance, respictandGy(s) = C (s —A) ' By+
Dy.

Note that these disturbance zeros defined in (17) are différem the system (input/output) transmis-
sion zeros. The disturbance ze{ds, } are related to the TFM fromi(t) to y(t), whereas the transmission
zeros are associated with TFM(s) = C(sI — A)~'B + D relatingu(t) to y(t).

Definition 2 (disturbance zeros of the dynamic filtethe disturbance zeros of the filter (13) are the

transmission zeros af4(s) such thatG,(s) loses rank locally.
Zy = {s| rank G4(s) < min(r, d)} (18)
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It is worthy noting that disturbance zerds may vary fromZ;, as G4(s) differs from Gy(s). The
relationship between these two sets will be given in thefailhg theorem. Before presenting the theorem,
an existing lemma shows that zeros are associated withireglacolumn or row rank of the (Rosenbrock)
system matrix.

Lemma [28], [26] Given a completely controllable and observabistem (A, B,C, D), for any
complex numbes, the rank of the (Rosenbrock) system matfixs) is equal to the rank of the TFM

F(s) = C(sI — A)™'B + D plusn.
rank P(s) =rank F'(s) + n

where
sI—A B

-C D

P(s) =

This lemma can be understood as thdt) loses rank at a complex frequeney= z if and only if the
normal rank of the system matriR(s) is reduced at = z. A useful conclusion from the lemma is that,
under the condition of controllability and observabilithe zero set is the same as the set of complex
numbers{s} at which the system matri®(s) loses rank locally.

Theorem 3.1:If the system(A, By, C, Dy) is controllable and observable, the disturbance z&kosf
the dynamic filter (13) are the disturbance zefsof the plant system (2) together with the poles of

the dynamic filter gain (7, namely
Zy = Zy U {eigenvalues of<; } (19)

Proof: According to the lemma, the disturbance zerog7gfs) in system (2) coincides with those

complex values: at which the Rosenbrock system mat#y(s) loses rank locally.

Zy = {s|rankP;(s) < n + min(r,d)} (20)
where
sl —A Bd
Py(s) = (21)
—C Dy

with normal rankn + min(r, d).

Similarly, for the dynamic filter (13), the disturbance zeare the set of complex numbersuch that

rank Py(s) < n +m + min(r, d) (22)
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where
sl — A+ K,C K; By — K4Dy
Py(s) = ~KoC  sI—K, KDy (23)
-C 0 Dy

is the corresponding Rosenbrock system matrix with éize- m + r) x (n +m + d) and normal rank

n 4 m +min(r, d). Hence, the disturbance zeros@f(s) can be expressed as
Zy = {s|rank Py(s) < n +m + min(r,d)} (24)
The rank of P,(s) (23) can be calculated by

rank Py (s)
sI—A Kg Bd
= rank| —K,C sI— K, KD,

-C 0 Dy
[ sl — A K B, ]
3 d (25)
= rank 0 sI—-K; 0
-C 0 Dy
sI—A Bd Kg
= rank —C Dy 0
0 0 sI—K;
It follows that the filter disturbance zerd$, are those values of for which
s — A Bd .
rank < n+min(r,d) (26)
—C Dy
or/fand
rank [s] — Ki] <m (27)

Comparing (26) and (20), one can see that the zeros givenustieq (26) coincide witl?Z;. Then the
disturbance zeros of the plant system is a subset of therlstae zeros of the corresponding dynamic
filter.

Equation (27) shows that the eigenvaluesiof compose another subset of the dynamic filter distur-

bance zeros. These zeros are the poles of the dynamic gain (7)
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The result of the theorem follow§).E.D.

Theorem 3.1 verifies that the disturbance zeros are indriatatic filter. It means, if is a disturbance
zero of plant (2)s is a zero of the corresponding dynamic/static filter too. Buthe zero invariance, one
can not shift the positions of zeros in the static filter. Imdmic filters, however, the extra disturbance
zeros introduced by the dynamic gain can be arbitrarilygmesd, even if some of the filter disturbance
zeros are invariant from the system disturbance zeros. i$htsee main implication of Theorem 3.1.

Theorem 3.1 implies that ath-order dynamic system (7) introducesadditional transmission zeros
in the dynamic filter, and the additional zeros are locatethatpoles of the dynamic feedback gain.
Theorem 3.1 can be understood as a generalization of thekn@n SISO dynamic feedback control
result that closed-loop zeros are zeros in the forward-pathpoles in the feedback-path.

Remark 1: From Theorem 3.1 it follows that Pl filters proposed by [22]yintroduces disturbance
zeros at the origin. This explains why PI filters achieve adogterformance at rejecting step/constant
disturbances in the steady state than static filters.

Remark 2: It is of interest to draw attention to the dynamic filter in,[#jhere two dynamic systems
are adopted to replace two constant gain matrices. It caredr that, by adding two dynamic feedbacks
(one added inta:, one intog), more parameters and design freedom are provided thaofttfae present
dynamic filter. It is of interest and encouraged to extendphesent work by the use of this kind of
filters in the future.

Remark 3: The proposed dynamic filter is a robust filter, which diffemsnfi the Kalman Filter (KF)
in two ways: 1) different structures, the KF has the samecgira as the static filter, and the dynamic
filter extends the static gain matrix to a dynamic system;ift¢rént performance criteria. The KF aims
at minimizing the covariance of state estimation error ursechastic noises. The objective of the robust
filter is to enhance robustness to model uncertainties arm#terministic disturbances. Therefore, the
resulting filters show different performances. As reporiteanany literatures [15], the KF works well
in rejecting stochastic noises with known covariance, aiulist filters achieve a better performance in
attenuating deterministic disturbances. Furthermore,ativantages of the dynamic filter are: a) more
design freedom; b) by assigning zeroes, the number of frempters is reduced by x m.

Without claiming neither that Kalman filtering is not usefl fault detection, nor that the (dy-
namic/static) filter is the best one available, it is felttitzss a different structure, the robust dynamic filter

is an alternative which can give a new sight on filter desigth achieve a better robust performance.
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IV. ZERO-POLE ASSIGNMENTPROCEDURE

It is well known that poles are insufficient to determine tlgstem behavior that is also greatly affected
by zeros. For instance, in a SISO system, if the transfertiomdas a zero at-jw, then the magnitude
response at frequenay is zero. Thus, the steady-state system output of the sidalsmiput asin(wt)
is zero. According to the theory of system zero [28], [25]sifs the zero of a MIMO system, then
there exists some input (vector(t) = Bet, (3 # 0) such that its propagating through the system
is blocked. Since the disturbance zerds are defined as the zeros betweémn) and r(t), for some
specific disturbancei(t) can not pass through the filter. One can use this property tiirotisturbance
attenuation. Hence, placing one or more disturbance zertte arigin (or+jw on the imaginary axis)
will attenuate a step disturbance (or a sinusoidal dishaba’*?, respectively).

Unfortunately, because of the invariance of zeros, theudiahce zeros in static filters can not be
changed. Theorem 3.1, however, shows the possibility af assignment in dynamic filters by introducing
additional zeros. It is also shown that the additional zaresndependent frork,, K3 andK,. The zero
assignment in dynamic filters can be stated as: the additmmras introduced byx; can be arbitrarily
placed to desired positions by assigning the eigenvaluds, gfroperly. Thus, the limitation of invariant
zeros in static filters is overcome and the disturbance @dtiton performance can be improved to some
extent.

A further consideration is that the set of zeros must be cm@ifugated, such that the resulting matrix
K; is real. For a disturbance at frequency, the desired zeros should hejw;. Thus, the required
number of poles is twice the number of disturbance frequesnand the order of the dynamic feedback
(7) can be determined by

m = 2ng (28)

whereng is the number of disturbance frequencies. Hence, the sizhe parameter matricds,, K., K3, K,

are determined accordingly. For pole assignment, the xdtrtan be decomposed as

i A-K,C —-Kj;
K,C K,
- (29)
A 0 N -Ks K3 C 0
0 Ky Ko, 0 0 I
where A, C' is known andK; is determined by the zero assignment. The pole assignmeatfisd an
-K; -K ~
appropriate parameter matri ! ® | so that the eigenvalues of are assigned to some areas
Ks 0

on the left-halfs-plane.
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Remark 4: Note that, as the magnitude response in the neighborhodakqddle shoots up to infinity,
the pole regions should be far from the disturbance frequengo to avoid their effects of enlarging
the magnitude response #fjw. Similarly, because the major frequency components of @hbneipient
faults are at low frequency [2], the poles of the fault TRE/}(s) should be close to the origin, such
that the magnitude response at low frequency is enlargedhendffects off(¢) in residualr(t) can be
enhanced.

Remark 5: The benefit of zero assignment is that a better trade-off lidesed between the design
freedom and computation complexity. This would be twofald: making use of the design freedom
provided by dynamic filters to improve the disturbance atégion performance; 2) reducing the compu-
tation complexity of dynamic filter design. Particularly,is true for the issue of 'curse of dimensions’
in parameter optimization. Compared to static filters wharly onen x » matrix need to be optimized,
the number of free parameters in dynamic filters @re+ n) x (m +r). For most current dynamic filter
design approaches, these free parameters are selectddyroygptimization algorithms [22], [24]. The
possibility of being trapped in local minima increases asdimension of parameter increases. With the
aid of zero assignment by specifying the matfix, the dimension of the search space in parameter
optimization is reduced byn x m.

In summary, the zero assignment technique in dynamic fiksigsh, on one side, is able to attenuate
the disturbance further by assigning zeros close to therttiabce frequency, and, on the other side, to
reduce the computation complexity by diminishing the seagace.

The zero assignment solution to the dynamic robust faukdien filter design can now be stated as
follows:

Given a system (2) corrupted kyt), if the main frequency contents of residua(g) can be estimated
atw;, (i =1,2,...,nq), then,(a) assign the zeros of dynamic filter #gjw;, (i = 1,2, ...,n4); (b) place

the eigenvalues afl in the left halfs-plane and(c) minimize the following performance index
> Wi éd(S)‘ -
J = — A (30)
a4 ZClIN

to give the optimal gain matri¥(,, K5 and K. Therefore, residuat(t) is an optimal detection of (¢).

Here, V; is the weighting factor selected according to the distidsubf the disturbance] - ||2 s—juw,
denotes the 2-norm of a TFM at= jw;, || - ||~ denotes thef{,, norm of a TFM andp is a small
positive real number to guarantee the denominator will r®tzbro. The minimization of numerator

o W;||G4l| is for attenuating disturbances (in another words, to eod#tre robustness to disturbances);
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the minimization of1/(p + ||G||) (equivalently, maximization of|G ||-.) is to enhance the effects

of faults in residuals-(¢). The detailed design procedure is

1) Estimate the disturbance frequencies } via the spectrum analysis of the residual. The residual
can be generated by any stable static fil&y (e.g., by using MATLABplace command);

2) Determine the ordem of the dynamic gain by (28), and assign the eigenvalue&pfclose to
these disturbance frequencigs; }.

3) Select regions of dynamic filter poles.

4) Select initial values of,, K3, K, and find their optimal values through optimization such that
performance functioy (30) is minimized,;

5) A fault can be detected during system operation by usirggtiold techniques or detecting changes

in statistical properties of residuals, e.g., mean values.

The optimization step aims at (a) stabilizing the dynamitefil (b) enhancing the robustness to
disturbances and (c) optimizing the sensitivity to faulisis is a typical constrained optimization problem

and can be done by setting nonlinear constraints orikthes and K.

V. APPLICATION AND RESULTS

To illustrate the proposed fault detection filter designrapph, this section considers the robust fault

detection of a gas turbine engine whose model is given as:

—0.943 0.1601
xr = xr
3.9439 —-3.234
86.794 40.312
u(t) (31)
154.691 81.275
1 0
y = z(t)
01
The disturbance model is assumed as
0 0
By=Bf=B Dy=Ds= (32)
00

where the fault matrixB; = B for actuator faults. Note thatl3; = B too, as it is common in the
industrial applications where disturbances enter theesydby corrupting the input signal. A further
advantage is that the estimation of disturbance mdjxis avoided. It can be verified that the system

(31) and(A, By, C, Dy) is controllable and observable. Then the condition of TaepB.1 is met.
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It is worth noting that, in this configuratiofB; = By = B), the widely usedH,/H, static filter
design may fail without weighting functions, as the TF@!g(s), Gy(s) are the same and the performance
index [|Ga(s)]loe/lIGf(s)||o is always equal to 1.

The disturbances injected to the systems are quasi-saagicignals:

5 = 0.25[sin(5t) + sin(10t + 7 /4)] + n1(t) (33)
0.25[cog5t) + sin(10t + 7/3)] + na(t)
wheren; (t) andngo(t) are mutually independent white noisd%0, 0.01) with zero mean and variance
0.01. Fig. 2 shows the disturbances. In the simulation, ipeits«(¢) are unit step signals and both the
amplitudes ofd; (¢), dx(t) are over 50% of the amplitudes of input signals. Moreoveg, disturbances
contain mainly low frequency components. Attenuating lawqgtiency disturbances is given higher
priority, because common step/incipient faults are maatbpw frequencies and most of industrial systems

behave as low-pass filters. Hence, it is more challengingtemaate low frequency disturbances.

dl(t)=0.25[sin5t+sin(10t+TV4)]+n1(t)

3]
°
2
€ 0
[o)]
<
=
—l I I I I )
0 10 20 30 40 50
dz(t)=0.25[0055t+sin(10t+Td3)]+n2(t)
(]
e)
2
= 0
(2]
I}
=
_l 1 L J
0 10 40 50

20 30
Time(second)

Fig. 2. Quasi-stationary disturbances

Following the procedure in the preceding section, now a oyadilter is designed for this system.

Step 1l.In order to estimate the disturbance frequency, a statier fif first constructed vid<y, =
place(AT,CT,[-1,-1])T. An 1024-point FFT is employed to calculate the spectruntsofdsidual(¢).
Fig.3 provides an illustration of the spectrum of the actliaturbance and its estimate via the residual.
From the plot on the right of Fig.3, it can be seen théf) has two main components corresponding
to the disturbance frequencies= {5.0, 10} (rad/sec). This estimated frequencies agree with the lctua
disturbance frequencies. Hence, sgt= 2, w; = {5.0,10} and the weighting factor®/; = 1,7 = 1,2

Step 2. It follows that the desired zero positions at$;, £10j and the order of the dynamic gain
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Spectrum of d(t) Spectrum of r(t) by KO
0 40
~ -10
."g & 20
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g g
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Angular Freq w (rad/sec) Angular Freq w (rad/sec)

Fig. 3. Spectra of the disturbances and the residual& of

Hu(s) H12(S)
H21(8) ng(s)
(52 +1.833s + 0.8447)(s2 + 2.344s + 1.382)

Gy(s) = Ga(s) = (35)

where Hi1(s) = 86.79(s + 14.75)(s* 4+ 35 + 18.2)(s® +11.35s + 75.3)  Hi2(s) = 154.7(s + 16.63)(s* + 2.41s + 6.62) (s> —

0.713s + 35.74),
Ho1(s) = 40.31(s 4 14.4)(s? +2.27s + 17.65)(s® + 13.65 + 87.26) Hoo(s) = 81.28(s 4 16.65) (s> + 2.225s + 6.615)(s* —

0.425 + 34.78).

is m = 4. Then the dynamic filter structure i§; € R**4, K, ¢ R**2, K3 € R?*4, K, € R?*2, Let

[ 0 -5 0 0
5 0 0 0
K = (34)
0 0 0 -10
0 0 10 O

to assign zeros t¢+5j, 105 }.
step 3.Set the desired regions of poles are: (a) their real partkeasethan-1, and (b) their imaginary

parts are close to real axis as much as possible. The reasgh)fes that, if the pole is on real axis

without imaginary part, its effects on imaginary frequescmay be reduced. An equivalent statement

was presented iRemark 7
step 4.Set the initial values ok, K3, K4 randomly and use the algorithfimincon()(by Optimization
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Toolbox in Matlab). The optimal solution is

[ 00727 3.7002 |
2.5856 —5.3730
K2 - )
—0.2838  5.2500
—6.2984  0.0765
. ] (36)
K 1.7224  —4.5248 —27.1796  6.0431
3 — )
—3.5649 —12.4087 —7.2836 —8.8425
18.5227 —5.0874
K, =
5.9855  16.4604
which gives the resulting dynamic filter
[ 1947 5248 172 4523 27.18 —6.04 |
—2.042 —19.7 3.565 12.41 7.284 8.843
i- 0.072 3.709 0 -5 0 0
2.586 —5.373 ) 0 0 0
—0.284 5.250 0 0 0 —10
| 6208 0077 0 0 10 0 |
[ 86794 40.312 |
(37)
154.691 81.275
~ ~ 0 0
By= By =
0 0
0 0
- 0 0 -
~ 1 0 0 0 0 0 ~ ~
C = , Dg=0, Dy =0
01 0 00O
And the six poles of the dynamic filter are:
{-16.8934, —15.8096, —3.4574 — 1.0+ 0.2617j, —1.0} (38)

As discussed before, since the disturbance(fault) digtdh matricesB, = B; = B, the TFMsG/(s),
Gq(s) are identical, as shown in equation (35).

It is easy to verify that the normal rank of TFM (35) is 2 anddtluces to 1 whers = {+5j,+105}.
Therefore, the disturbance zeros of TFM (35) &#e5j, 105} which is consistent with Theorem 3.1.
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For fair comparison to the conventional static filterHa,/H., static filter L, is designed by taking
use of weighting functions. Since the zeros are of intethstgeffects of different poles should be reduced
as much as possible. Hence, the pole regions are restrictidn tsimilar area as the dynamic filter. The
resulting H../ Ho filter gain matrix is

4.0827 —3.8591

Ly = (39)
7.9752 —6.2600

which gives the filter poles at 1.0 + 0.0082;.
A static filter is also designed by usirgace() function provided by Matlab which gives the static

gain matrix

0.0574 —0.1016
Ly = (40)
4.2056 —2.2347

with poles at—1.0 + 0.2617;5. Note that, because the static filters do not change thersystder, they
have only two poles. These two pol¢s-1.0 + 0.26175} are selected as the desired poles gtace()
because they are dominant poles in the dynamic filter.

The magnitude responses(é}(s) andG,(s) of these 3 filters are depicted in Fig. 4. It can be seen that,

Magnitude Response of TFMs from d(t) (f(t)) to r(t)

From: d, OR f, From:d, OR f,

Dyn

i /———Ll

- -2

Torr,

Magnitude (dB)

10 '\U{ 10 1\'}')1\') WU'] WU‘ WUQ
Frequency (rad/sec)

Fig. 4. Magnitude responses of the TF@sf(s) andGy(s) in dynamic filter (solid), static filtef.; (dashed) and.. (dash-dot).
Note that,G4(s) and G (s) are identical, becausB,; = By, Dg = Dy.

compared to those of static filters, the dynamic filter has dipund the disturbance frequencies in the
magnitude response. These dips contribute the improveomeattenuating the band-limited disturbances.
Furthermore, in the dynamic filter, the magnitude arouna Zexquency (where the main components

of the fault are) is greater than that of static filters, whicthances the effects of the fault in residuals.
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A. Residuals without fault

In this simulation, no fault happens. Fig. 5 shows the noris(6)4,,, r(t)1 andr(t)rs, which
are the residuals of our dynamic filtdi<,, Ko, K3, K4}, the static filterL; and L, respectively. It
can be seen thair(t)|lsy» has a large overshoot at the beginning due to the transiecesgs of the
dynamic filter. In the steady state, the disturbance att@mu#n dynamic filter is more significant than
that of L1, L,. In the steady state, the maximum magnitude|«ft)| 4, is below than 8, however that
of ||7(t)|lz1, ||Im(t)|lz2 is nearly 20. A comparison has also been made between th@ggdpmethod
and the classic disturbance estimation method [2] (denloyed;) as shown in Figure 5, where the 4th
subplot||r(t)||z3 shows the residual response of the disturbance estimatahauh. It can be seen that
their maximum magnitude are similar. However, our methaggia smaller standard deviation which is

defined as follows.

o
o
]

s ol RMSE=2.8014
== dyn STD=1.5104
= 10

0
0 10 20 30 40 50
40
Il RMSE=8.4887
= STD=4.5276
Z 20
0 ‘ ;
0 10 20 30 40 50
40
Il RMSE=7.2380
Zﬁ STD=4.1867
Z 20
0 : ‘ ‘ ‘
0 10 20 30 40 50
40

9 [ILGII RMSE=2.6192
= 20 STD=1.9764
= 10

0 ‘
0 10 20 30 40 50

Time (second)

Fig. 5. Fault free residuals corresponding to the dynamterfi] the H../H filter L., static filter L, and disturbance

estimation approaclis, respectively.

The disturbance attenuation performance is also evaluatedrms of the root mean square error
(RMSE) and the standard deviation (STD):
RMSE = E{|ly(t) - §(®)[1} = E{Ir(®)[}
STD = /E{([Ir()] - RMSE)?)
where||y|| denotes a vector norRyy_, [y;[2 and E{} denotes the mathematical expectation. The RMSE/STD

(41)

values are also shown in Fig. 5.
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B. Residuals of abrupt actuator faults

In order to simulate the happenings of two successive alaoptator faults at two input channels

respectively, the fault function is representedfag) = [f1(t) fo(¢)]" and

Residuals of abrupt actuactor faults
TLOTN
120

lIF@l,
IF@l,,
Irol,

140

100

80

Magnitude

60

40t

20

EAALLdA L]
i P DA A WA
0 5 10 15 20 25 30 35 40 45 50
Time (second)

Fig. 6. Residuals of the dynamic filteH ./ H- filter L, and static filterLs in the case of two abrupt actuator faults at 20s

and 30s, respectively

The residuals of the dynamic filter, static filtei and Lo, disturbance estimation are depicted in Fig.
6, where two step increases|in(t)||4,, can be seen clearly within 1 second after each fault occims. T
filters L; and Ly, however, fail to detect such abrupt faults. Although thakpealues of the residuals
of these static filters present step increases, there iseao oiterval between the normal residuals and

faulty residuals. Therefore, missed alarms may exist.

C. Residuals of an incipient actuator faults
In this trial, the gradual fault injected to the input sigiglf,(t) = [f1(t) f2(t)]T and

0 (t < 20)
fi(t) = i fo(t) =0 (42)
0.0025(t —20) (k> 20)
and the corresponding residuals are shown in Fig. 7.
To illustrate the fault detection performance, the plantpats under such a fault are also plotted in

Fig. 7. Due to the large output values and the small fault, gkze changes in the outputs is difficult to
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System outputs under the incipient actuator fault

Shaft Speeds (RPM)
=
u
o
T

i i i i i i i i i i
0 5 10 15 20 25 30 35 40 45 50
Time (second)

Residuals of the incipient actuator fault
140 : : :
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100l liroll,,
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80
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Fig. 7. Plant outputs and residuals under an incipient &mtdault at the first input channel. The actuator fault oscat 20
second with slope rate 0.005

find. However, this fault can be detected clearly from theadyit filter residuals||r(t)||4,, responses
the incipient fault (42) with a fairly straight line incraag at aboutt units per second. Where@s(t)|| .1

is with significant disturbances and its increase rate ig 6nl unit per second. This comparison verifies
that the dynamic filter is able to detect smaller gradualtfeallier and avoid missed alarm as much as
possible.

A comparison between the proposed method and the classichdiace estimation based method as
shown in Figure 6-7, where thér(¢)||.3 line represents the residual response of disturbance a&tim
method. As the magnitude of the residual of the proposed wdetbee] | (t)||4,,) is larger than that of
llr(t)||z, after the fault occurs, it can be concluded that the propaesethod is more sensitive to the

fault and is therefore better in terms of fault detectionf@anance.

VI. CONCLUSION

In this paper, a systematic study of the dynamic filter's gei presented. The properties of the

proposed dynamic filter are analyzed and its capacitiesafolt tletection are illustrated in simulations.
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The possibility of zeros assignment in dynamic filter desaga given and proved.
The proposed dynamic filter differs from the classical stdilier (and Kalman Filter) whose gain
matrix is a constant coefficient matrix. A dynamic gain igaciuced into the dynamic filter design. and

it is proved that a dynamic filter introduces additional zeemd shifts the system poles frosiy(A)

to eig(A). Although this technique increases system order and cotitylé brings more freedom for
filter design. In the proposed dynamic filter design appro#uoh additional degrees of design freedom
are used to assign the additional zeros to desired placestruating disturbances further.

In the application, low frequency disturbances (5 rad/se®d to be attenuated and the detection of
both the actuator and sensor faults is required. Simula@snlts have shown that the proposed zeros
assignment method comes with reasonably good disturbateuation. Hence, we are able, on one
side, to formulate and get a better filter in the sense of toless and disturbance rejection, and, on the

other side, to obtain new insight into the filter constructfor fault detection.
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