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Zero Assignment for RobustH2/H∞ Fault

Detection Filter Design
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Abstract

In practical engineering, it is inevitable that a system is perturbed by noise signals. Unfortunately,

H∞/H∞ filtering may fail to detect some faults when the noise distribution matrix are the same as

the fault distribution matrix. In this paper, it is shown that the dynamic feedback gain of a dynamic

filter introduces additional zeros to the filter, and both thefilter poles and the additional zeros can be

assigned arbitrarily. In order to attenuate band-limited noises, the zero assignment technique is used,

and an optimal dynamic fault detection filtering approach isproposed by locating the zeros to the noise

frequencies and optimizing the poles. Compared to other dynamic filter design approaches, the zero

assignment technique gives a better trade-off between moredesign freedom and computation costs. As

shown in the simulation, a better noise attenuation and fault detection performance have been obtained.

The zero assignment in multivariable fault detection filterdesign would be the main contribution of this

paper.
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I. INTRODUCTION

The fault detection filter problem can be formulated as an estimation problem where system outputs

are estimated and certain robustness and sensitivity performance must be satisfied. During the last two

decades, the robustness of a fault detection filter has been acentral theme in the development of fault

detection and isolation (FDI) system (e.g., [1], [2], [3], [4], [5], [6]), and a variety of approaches have

been proposed, such as UIOs (Unknown Input Observers) [7], Kalman filters [8], [9], filters with error

covariance assignment (ECA) [10], robust filters [11], [12], H∞ filtering [13] by means of a set of Riccati

equations [14], [15] or a set of linear matrix inequations (LMIs) [16] or LMIs with weighting functions

[6], [17], H2/H∞ filtering [16], [18], [19] and stochastic filtering [20]. TheH2 filter minimises theH2

norm of the residual transfer function matrix under the assumption that the noises have known power

spectral densities.H∞ filters are good at dealing with deterministic bounded disturbances caused by

model uncertainties in order to guarantee some robustness performance. The guaranteed performance,

however, may be very conservative, as it is only optimised for the worst-case [6]. Similarly,H− norm

is used to enhance the effects of faults by maximising the minimum (singular) value of the fault transfer

function matrix.

It is noted that most of the existing fault detection filters have been simply confined in traditional static

filters [2], [15], [16], [21]. Here, the termstatic filter is used to denote the classic Kalman/Luenberger

filter, in which a constant gain is used to filter the residual signal. It is well known that the nonunique

solution to the gain matrix brings the freedom to design an optimal filter. However, the static filter is

able to shift the poles only, but its zeros are invariant. As the performance depends not only on poles,

but also on positions of zeros, the zero invariance propertyimposes a limitation on the performance of

disturbance attenuation.

Therefore, it is a natural idea to introduce additional dynamics into filters for modifying the zeros.

In order to distinguish from classic filters, the termdynamic filter is used, in which a dynamic system

is employed to feedback the residual signal. Comparing to the static filters with only one gain matrix,

dynamic filters provide more design freedom, and presents both advantages and challenges.

Some preliminary works have been done on dynamic filters, butthe attention is mainly on the poles

assignment. PIO (Proportional Integral Observer) and PMIO(Proportional Multiple Integral Observer)

are discussed in [22], [23]. In [24], a dynamic observer design method is proposed as a dual of control

design for the state estimation. A similar work is the Lipschitz UIO [7], where two dynamic compensators

are introduced to tackle Lipschitz nonlinearities. It is worth noting that, all the reports on dynamic filter
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(observer) design ignored the additional zeros introducedby the additional dynamics. The extra free

parameters provided by the dynamic filters were determined roughly by optimisation algorithms. From

the view point of system performance, the poles are insufficient for achieving an optimal performance. It

is felt that the advantages of taking zeros into account would be twofold: 1) it is more possible to attenuate

the disturbance further if the filter zeros are close to the disturbance frequency; 2) the specification of zeros

puts more constraints on the free parameters and diminishesthe search space such that the computation

burden is reduced.

Although the multivariable system zeros were first proposedby Rosenbrock over thirty years ago, the

system zeros study received relatively less attention compared to the poles research. For more information

on system zeros, please see [25], [26], [27]. To the best of our knowledge, there have been no known

results of utilizing the zero assignment technique to design a fault detection filter.

Different from all the reported results on dynamic filter design, this paper aims to establish a zero

assignment approach for dynamic filter design and do systematic study on its properties. Based on the

well-established dynamic state feedback controller design, the properties of filter zeros, the possibility of

zeros assignment are studied in section II and III. In section IV, a detailed design procedure is given.

An application to fault detection of a multivariable systemand its results are illustrated in section V.

It has been shown that the zero assignment is possible only indynamic filters and a better disturbance

attenuation performance can be achieved.

II. PROBLEM FORMULATION

Consider a completely controllable and observable continuous LTI multivariable system




ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(1)

wherex ∈ R
n is the state,u ∈ R

p the input,y ∈ R
r the output (r ≥ p) andA ∈ R

n×n, B ∈ R
n×p,

C ∈ R
r×n, D ∈ R

r×p, a faulty system can be presented as [2]:




ẋ(t) = Ax(t) + Bu(t) + Bff(t) + Bdd(t)

y(t) = Cx(t) + Du(t) + Dff(t) + Ddd(t)
(2)

wheref(t) ∈ R
f , d(t) ∈ R

d are the general fault vector and disturbance vector, respectively. Bd(Bf ),

Dd(Df ) are disturbance(fault) distribution matrices.d(t) is a general disturbance vector due to exogenous

signals, linearisation or parameter uncertainties. For instance, model uncertainties can be presented as:

d(t) = ∆Ax(t) + ∆Bu(t) (3)
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Without loss of generality,d(t) is assumed as a quasi-stationary process with both deterministic and

stochastic components:

d(t) = s(t) + h(t) ∗ n(t) (4)

wheres(t) is a deterministic bounded disturbance with band-limited spectrum,n(t) a white noise,h(t)

the impulse response of a band-pass filter having the similarband ass(t) and∗ denotes the convolution

product. Thus,h(t) ∗n(t) is a band-limited stationary stochastic signal (colored noise) andd(t) is quasi-

stationary and band-limited.

The fault distribution matricesBf , Df can be determined according to which faults are to be detected.

For sensor faults, they are 



Bf = 0

Df = Ir

(5)

For actuator faults, they are 



Bf = B

Df = D
(6)

For both the disturbance/fault free system (1) and corrupted system (2), amth-order dynamic filter

will be used throughout this paper with:




ż(t) = K1z(t) + K2r(t)

v(t) = K3z(t) + K4r(t)
(7)

and 



˙̂x(t) = Ax̂(t) + Bu(t) + v(t)

ŷ(t) = Cx̂(t) + Du(t)
(8)

wherez ∈ R
m is thedynamic feedback state vector, v ∈ R

n the output of dynamic feedback, and

r(t) = y(t) − ŷ(t) (9)

is the residual signal. The basic concept of robust fault detection filter is to detectf(t) from the residual

signal.r(t) also works as a correction term to reduce the negative effects due tod(t).

The block diagram of the filtering problem is depicted in Fig.1. This dynamic filter has the similar

forward model (8) as the classic static filter. The obvious difference between the static filter and the

dynamic filter is the feedback path: the real coefficient constant gain matrixK in the static filter is

replaced with a dynamic system (7). This new dynamic system (7) offers more freedom which will be

used to assign zeros. Thetransfer function matrix(TFM) of the dynamic feedback system (7) relatingr

to v is given by

H(s) = K3(sI − K1)
−1

K2 + K4 (10)
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System
u(t)

f(t)d(t)

Estimator
(Forward Part)

y(t) r(t)

Feedback 

Gainv(t)

u(t)

Feedback Part

Fig. 1. Structure of the filter problem

Note that, in static filters, the feedback gain is a real coefficient constant matrixK without frequency

complex variables, which leads its TFM is a constant matrixK. Hence, the static filter does not change

the frequency characteristics of the correction termr(t). In dynamic filters, however, the feedback part

is a dynamic system (7)with TFM (10) with more freedom. Furthermore, it can been seen that a static

filter is a particular case of dynamic filters when settingK1 = 0,K2 = 0 andK3 = 0.

By connecting the dynamic feedback (7) and the forward part (8), the overall dynamics of the dynamic

filter can be rewritten in an augment form:





( ˙̂x

ż

)
=


 A− K4C K3

−K2C K1




(
x̂

z

)
+


 B

0


 u

+


 K4

K2


 (y − Du)

ŷ = [C 0]


 x̂

z


 + Du

(11)

Defining e(t) = x(t) − x̂(t) and subtracting (8) from the disturbance/fault corrupted system (2) yield




(
ė(t)

ż(t)

)
=


 A −K4C −K3

K2C K1




(
e(t)

z(t)

)

+


 Bd − K4Dd

K2Dd


 d(t) +


 Bf − K4Df

K2Df


 f(t)

r(t) = [C 0]

(
e(t)

z(t)

)
+ Ddd(t) + Dff(t)

(12)

It can be seen that the residual signalr(t) depends both on the disturbanced(t) and the faultf(t). Due

to the existence ofd(t), the fault detection performance may be considerable degraded. It is essential to

attenuate the effects ofd(t) in r(t) and enhance the sensitivity ofr(t) to f(t).
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Equation (12) can be rewritten in a compact form:




˙̃x(t) = Ãx̃(t) + B̃dd(t) + B̃ff(t)

r(t) = C̃x̃(t) + D̃dd(t) + D̃ff(t)
(13)

where

x̃ = [eT (t) zT (t)]T , Ã =


 A− K4C −K3

K2C K1


 ,

B̃d =


 Bd − K4Dd

K2Dd


 , B̃f =


 Bf −K4Df

K2Df


 ,

C̃ =
[

C 0
]
, D̃d = Dd, D̃f = Df

There are various methods to design the dynamic filter parameters K1,K2,K3,K4, such as eigen-

structure assignment [21], and dual controller design approach [24], [7]. In this paper, in order to get the

desired fault detection performance, we study the properties of the dynamic filter zeros first, and propose

an approach utilizing the zero assignment methodology.

III. TFM S OFDYNAMIC FILTER

It can be seen from (13) thatr(t) is not affected by the system inputu(t), as the process dynamics are

canceled in the observer. However, bothf(t) andd(t) contribute to non-zeror(t). Assuming the initial

conditions are zero,s-transforming (13) gives the TFM relatingd(t) to r(t)

G̃d(s) = C̃(sI − Ã)−1B̃d + D̃d . (14)

Similarly, the TFM relatingf(t) to r(t) is given by

G̃f (s) = C̃(sI − Ã)−1B̃f + D̃f (15)

The whole dynamics of the dynamic filter can be expressed as:

r(s) = G̃f (s)f(s) + G̃d(s)d(s) (16)

It can be seen clearly from (16) that, due to the existence ofd(s), the residualr(t) is nonzero even when

there is no fault. For a successful fault detection, it is essential to makeG̃d(s) small and enlargẽGf (s).
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A. Poles of Dynamic Filters

From the simplified expression (13) of the dynamic filter and its TFMs, one can see that the stability

of the dynamic filter is determined by the matrix̃A. According to linear system theory, the poles of the

filter (13) are the roots of the characteristic polynomialdet(sI − Ã) = 0. It follows that the complete

set of poles coincides with the eigenvalues of the matrixÃ. The dynamic filter is stable if and only if

all the eigenvalues of̃A are in the left halfs-plane.

It is worthy noting that, because of the importance of poles,most filter design approaches (e.g.,

eigenstructure assignment) in literature concerned on thepositions of poles and ignored the zeros. We

will analyze the zeros of the dynamic filter and assign the zeros by placing appropriate values to some

free parameters.

B. Zeros of Dynamic Filter

During the last three decades, considerable research has been done on defining zeros (called transmis-

sion zeros or invariant zeros) and deriving their properties. Generally, the transmission zeros are defined

in terms of TFM [28]. The transmission zeros are the complex numbers such that the rank of the TFM

is locally reduced. It has been shown that, ifs is a zero, then there exists some non zero proportional

est input vector such that its propagating through the system isblocked [25]. In this paper, this property

will be used to attenuate the propagation ofd(s) in (16). First of all, the disturbance zeros are defined

in an analogous way as the definition of transmission zeros.

Definition 1 (disturbance zeros of the actual system): the disturbance zeros of the plant (2) are these

transmission zeros of the TFM relating the disturbanced(t) to the system outputy(t). That is the set of

complex numbers such thatGd(s) loses rank locally

Z1 = {s| rank Gd(s) < min(r, d)} (17)

wherer, d are the dimension of the residual and disturbance, respectively, andGd(s) = C(sI−A)−1Bd+

Dd.

Note that these disturbance zeros defined in (17) are different from the system (input/output) transmis-

sion zeros. The disturbance zeros{Z1} are related to the TFM fromd(t) to y(t), whereas the transmission

zeros are associated with TFMG(s) = C(sI − A)−1B + D relatingu(t) to y(t).

Definition 2 (disturbance zeros of the dynamic filter): the disturbance zeros of the filter (13) are the

transmission zeros of̃Gd(s) such thatG̃d(s) loses rank locally.

Z2 = {s| rank G̃d(s) < min(r, d)} (18)
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It is worthy noting that disturbance zerosZ2 may vary fromZ1, as G̃d(s) differs from Gd(s). The

relationship between these two sets will be given in the following theorem. Before presenting the theorem,

an existing lemma shows that zeros are associated with reducing a column or row rank of the (Rosenbrock)

system matrix.

Lemma [28], [26] Given a completely controllable and observable system (A,B,C,D), for any

complex numbers, the rank of the (Rosenbrock) system matrixP (s) is equal to the rank of the TFM

F (s) = C(sI − A)−1B + D plus n.

rank P (s) = rank F (s) + n

where

P (s) =


 sI − A B

−C D




This lemma can be understood as thatF (s) loses rank at a complex frequencys = z if and only if the

normal rank of the system matrixP (s) is reduced ats = z. A useful conclusion from the lemma is that,

under the condition of controllability and observability,the zero set is the same as the set of complex

numbers{s} at which the system matrixP (s) loses rank locally.

Theorem 3.1:If the system(A,Bd, C,Dd) is controllable and observable, the disturbance zerosZ2 of

the dynamic filter (13) are the disturbance zerosZ1 of the plant system (2) together with the poles of

the dynamic filter gain (7, namely

Z2 = Z1 ∪ {eigenvalues ofK1} (19)

Proof: According to the lemma, the disturbance zeros ofGd(s) in system (2) coincides with those

complex valuess at which the Rosenbrock system matrixPd(s) loses rank locally.

Z1 = {s|rankPd(s) < n + min(r, d)} (20)

where

Pd(s) =


 sI − A Bd

−C Dd


 (21)

with normal rankn + min(r, d).

Similarly, for the dynamic filter (13), the disturbance zeros are the set of complex numberss such that

rank P̃d(s) < n + m + min(r, d) (22)
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where

P̃d(s) =




sI − A + K4C K3 Bd − K4Dd

−K2C sI − K1 K2Dd

−C 0 Dd


 (23)

is the corresponding Rosenbrock system matrix with size(n + m + r) × (n + m + d) and normal rank

n + m + min(r, d). Hence, the disturbance zeros ofG̃d(s) can be expressed as

Z2 = {s|rank P̃d(s) < n + m + min(r, d)} (24)

The rank ofP̃d(s) (23) can be calculated by

rank P̃d(s)

= rank




sI − A K3 Bd

−K2C sI − K1 K2Dd

−C 0 Dd




= rank




sI − A K3 Bd

0 sI − K1 0

−C 0 Dd




= rank




sI − A Bd K3

−C Dd 0

0 0 sI − K1




(25)

It follows that the filter disturbance zerosZ2 are those values ofs for which

rank


 sI − A Bd

−C Dd


 < n + min(r, d) (26)

or/and

rank [sI − K1] < m (27)

Comparing (26) and (20), one can see that the zeros given by equation (26) coincide withZ1. Then the

disturbance zeros of the plant system is a subset of the disturbance zeros of the corresponding dynamic

filter.

Equation (27) shows that the eigenvalues ofK1 compose another subset of the dynamic filter distur-

bance zeros. These zeros are the poles of the dynamic gain (7).
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The result of the theorem follows.Q.E.D.

Theorem 3.1 verifies that the disturbance zeros are invariant in static filter. It means, ifs is a disturbance

zero of plant (2),s is a zero of the corresponding dynamic/static filter too. Dueto the zero invariance, one

can not shift the positions of zeros in the static filter. In dynamic filters, however, the extra disturbance

zeros introduced by the dynamic gain can be arbitrarily assigned, even if some of the filter disturbance

zeros are invariant from the system disturbance zeros. Thisis the main implication of Theorem 3.1.

Theorem 3.1 implies that amth-order dynamic system (7) introducesm additional transmission zeros

in the dynamic filter, and the additional zeros are located atthe poles of the dynamic feedback gain.

Theorem 3.1 can be understood as a generalization of the well-known SISO dynamic feedback control

result that closed-loop zeros are zeros in the forward-pathand poles in the feedback-path.

Remark 1: From Theorem 3.1 it follows that PI filters proposed by [22] only introduces disturbance

zeros at the origin. This explains why PI filters achieve a better performance at rejecting step/constant

disturbances in the steady state than static filters.

Remark 2: It is of interest to draw attention to the dynamic filter in [7], where two dynamic systems

are adopted to replace two constant gain matrices. It can be seen that, by adding two dynamic feedbacks

(one added intȯ̂x, one intoŷ), more parameters and design freedom are provided than thatof the present

dynamic filter. It is of interest and encouraged to extend thepresent work by the use of this kind of

filters in the future.

Remark 3: The proposed dynamic filter is a robust filter, which differs from the Kalman Filter (KF)

in two ways: 1) different structures, the KF has the same structure as the static filter, and the dynamic

filter extends the static gain matrix to a dynamic system; 2) different performance criteria. The KF aims

at minimizing the covariance of state estimation error under stochastic noises. The objective of the robust

filter is to enhance robustness to model uncertainties and/or deterministic disturbances. Therefore, the

resulting filters show different performances. As reportedin many literatures [15], the KF works well

in rejecting stochastic noises with known covariance, and robust filters achieve a better performance in

attenuating deterministic disturbances. Furthermore, the advantages of the dynamic filter are: a) more

design freedom; b) by assigning zeroes, the number of free parameters is reduced bym × m.

Without claiming neither that Kalman filtering is not usefulin fault detection, nor that the (dy-

namic/static) filter is the best one available, it is felt that, as a different structure, the robust dynamic filter

is an alternative which can give a new sight on filter design and achieve a better robust performance.
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IV. Z ERO-POLE ASSIGNMENT PROCEDURE

It is well known that poles are insufficient to determine the system behavior that is also greatly affected

by zeros. For instance, in a SISO system, if the transfer function has a zero at±jω, then the magnitude

response at frequencyw is zero. Thus, the steady-state system output of the sinusoidal inputαsin(wt)

is zero. According to the theory of system zero [28], [25], ifs is the zero of a MIMO system, then

there exists some input (vector)u(t) = βest, (β 6= 0) such that its propagating through the system

is blocked. Since the disturbance zerosZ2 are defined as the zeros betweend(t) and r(t), for some

specific disturbance,d(t) can not pass through the filter. One can use this property to obtain disturbance

attenuation. Hence, placing one or more disturbance zeros at the origin (or±jω on the imaginary axis)

will attenuate a step disturbance (or a sinusoidal disturbanceejωt, respectively).

Unfortunately, because of the invariance of zeros, the disturbance zeros in static filters can not be

changed. Theorem 3.1, however, shows the possibility of zero assignment in dynamic filters by introducing

additional zeros. It is also shown that the additional zerosare independent fromK2, K3 andK4. The zero

assignment in dynamic filters can be stated as: the additional zeros introduced byK1 can be arbitrarily

placed to desired positions by assigning the eigenvalues ofK1 properly. Thus, the limitation of invariant

zeros in static filters is overcome and the disturbance attenuation performance can be improved to some

extent.

A further consideration is that the set of zeros must be self-conjugated, such that the resulting matrix

K1 is real. For a disturbance at frequencyωi, the desired zeros should be±jωi. Thus, the required

number of poles is twice the number of disturbance frequencies and the order of the dynamic feedback

(7) can be determined by

m = 2nd (28)

wherend is the number of disturbance frequencies. Hence, the sizes of the parameter matricesK1, K2, K3, K4

are determined accordingly. For pole assignment, the matrix Ã can be decomposed as

Ã =


 A− K4C −K3

K2C K1




=


 A 0

0 K1


 +


 −K4 −K3

K2 0





 C 0

0 I




(29)

whereA,C is known andK1 is determined by the zero assignment. The pole assignment isto find an

appropriate parameter matrix


 −K4 −K3

K2 0


 so that the eigenvalues of̃A are assigned to some areas

on the left-halfs-plane.
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Remark 4: Note that, as the magnitude response in the neighborhood of the pole shoots up to infinity,

the pole regions should be far from the disturbance frequency ±jω to avoid their effects of enlarging

the magnitude response at±jω. Similarly, because the major frequency components of abrupt/incipient

faults are at low frequency [2], the poles of the fault TFM̃Gf (s) should be close to the origin, such

that the magnitude response at low frequency is enlarged andthe effects off(t) in residualr(t) can be

enhanced.

Remark 5: The benefit of zero assignment is that a better trade-off is achieved between the design

freedom and computation complexity. This would be twofold:1) making use of the design freedom

provided by dynamic filters to improve the disturbance attenuation performance; 2) reducing the compu-

tation complexity of dynamic filter design. Particularly, it is true for the issue of ’curse of dimensions’

in parameter optimization. Compared to static filters whereonly onen× r matrix need to be optimized,

the number of free parameters in dynamic filters are(m + n)× (m + r). For most current dynamic filter

design approaches, these free parameters are selected roughly by optimization algorithms [22], [24]. The

possibility of being trapped in local minima increases as the dimension of parameter increases. With the

aid of zero assignment by specifying the matrixK1, the dimension of the search space in parameter

optimization is reduced bym × m.

In summary, the zero assignment technique in dynamic filter design, on one side, is able to attenuate

the disturbance further by assigning zeros close to the disturbance frequency, and, on the other side, to

reduce the computation complexity by diminishing the search space.

The zero assignment solution to the dynamic robust fault detection filter design can now be stated as

follows:

Given a system (2) corrupted byd(t), if the main frequency contents of residualsr(t) can be estimated

at wi, (i = 1, 2, . . . , nd), then,(a) assign the zeros of dynamic filter to±jwi, (i = 1, 2, . . . , nd); (b) place

the eigenvalues of̃A in the left halfs-plane and(c) minimize the following performance index

J =

∑nd

i Wi

∣∣∣
∣∣∣G̃d(s)

∣∣∣
∣∣∣
2,s=jwi

ρ +
∣∣∣
∣∣∣G̃f (s)

∣∣∣
∣∣∣
∞

(30)

to give the optimal gain matrixK2,K3 andK4. Therefore, residualr(t) is an optimal detection off(t).

Here,Wi is the weighting factor selected according to the distribution of the disturbance,‖ · ‖2,s=jwi

denotes the 2-norm of a TFM ats = jwi, ‖ · ‖∞ denotes theH∞ norm of a TFM andρ is a small

positive real number to guarantee the denominator will not be zero. The minimization of numerator
∑nd

i Wi||G̃d|| is for attenuating disturbances (in another words, to enhance the robustness to disturbances);
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the minimization of1/(ρ + ||G̃f ||∞) (equivalently, maximization of||G̃f ||∞) is to enhance the effects

of faults in residualsr(t). The detailed design procedure is

1) Estimate the disturbance frequencies{wi} via the spectrum analysis of the residual. The residual

can be generated by any stable static filterK0 (e.g., by using MATLABplace command);

2) Determine the orderm of the dynamic gain by (28), and assign the eigenvalues ofK1 close to

these disturbance frequencies{wi}.

3) Select regions of dynamic filter poles.

4) Select initial values ofK2,K3,K4 and find their optimal values through optimization such thatthe

performance functionJ (30) is minimized;

5) A fault can be detected during system operation by using threshold techniques or detecting changes

in statistical properties of residuals, e.g., mean values.

The optimization step aims at (a) stabilizing the dynamic filter; (b) enhancing the robustness to

disturbances and (c) optimizing the sensitivity to faults.This is a typical constrained optimization problem

and can be done by setting nonlinear constraints on theK2,K3 andK4.

V. A PPLICATION AND RESULTS

To illustrate the proposed fault detection filter design approach, this section considers the robust fault

detection of a gas turbine engine whose model is given as:




ẋ(t) =


 −0.943 0.1601

3.9439 −3.234


x(t)

+


 86.794 40.312

154.691 81.275


 u(t)

y =


 1 0

0 1


 x(t)

(31)

The disturbance model is assumed as

Bd = Bf = B Dd = Df =


 0 0

0 0


 (32)

where the fault matrixBf = B for actuator faults. Note that,Bd = B too, as it is common in the

industrial applications where disturbances enter the system by corrupting the input signal. A further

advantage is that the estimation of disturbance matrixBd is avoided. It can be verified that the system

(31) and(A,Bd, C,Dd) is controllable and observable. Then the condition of Theorem 3.1 is met.
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It is worth noting that, in this configuration(Bd = Bf = B), the widely usedH∞/H∞ static filter

design may fail without weighting functions, as the TFMsG̃f (s), G̃d(s) are the same and the performance

index ‖G̃d(s)‖∞/‖G̃f (s)‖∞ is always equal to 1.

The disturbances injected to the systems are quasi-stationary signals:

d(t) =


 0.25[sin(5t) + sin(10t + π/4)] + n1(t)

0.25[cos(5t) + sin(10t + π/3)] + n2(t)


 (33)

wheren1(t) andn2(t) are mutually independent white noisesN(0, 0.01) with zero mean and variance

0.01. Fig. 2 shows the disturbances. In the simulation, the inputsu(t) are unit step signals and both the

amplitudes ofd1(t), d2(t) are over 50% of the amplitudes of input signals. Moreover, the disturbances

contain mainly low frequency components. Attenuating low frequency disturbances is given higher

priority, because common step/incipient faults are mainlyat low frequencies and most of industrial systems

behave as low-pass filters. Hence, it is more challenging to attenuate low frequency disturbances.
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ni
tu
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Fig. 2. Quasi-stationary disturbances

Following the procedure in the preceding section, now a dynamic filter is designed for this system.

Step 1.In order to estimate the disturbance frequency, a static filter is first constructed viaK0 =

place(AT , CT , [−1,−1])T . An 1024-point FFT is employed to calculate the spectrum of its residualr(t).

Fig.3 provides an illustration of the spectrum of the actualdisturbance and its estimate via the residual.

From the plot on the right of Fig.3, it can be seen thatr(t) has two main components corresponding

to the disturbance frequenciesω = {5.0, 10} (rad/sec). This estimated frequencies agree with the actual

disturbance frequencies. Hence, setnd = 2, ωi = {5.0, 10} and the weighting factorsWi = 1, i = 1, 2

Step 2. It follows that the desired zero positions are±5j, ±10j and the order of the dynamic gain
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Fig. 3. Spectra of the disturbances and the residuals ofK0.

eGf (s) = eGd(s) =

2
4 H11(s) H12(s)

H21(s) H22(s)

3
5

(s2 + 1.833s + 0.8447)(s2 + 2.344s + 1.382)
(35)

whereH11(s) = 86.79(s +14.75)(s2 + 3s + 18.2)(s2 +11.3s + 75.3) H12(s) = 154.7(s + 16.63)(s2 + 2.41s + 6.62)(s2
−

0.713s + 35.74),

H21(s) = 40.31(s + 14.4)(s2 + 2.27s + 17.65)(s2 + 13.6s + 87.26) H22(s) = 81.28(s + 16.65)(s2 + 2.225s + 6.615)(s2
−

0.42s + 34.78).

is m = 4. Then the dynamic filter structure isK1 ∈ R
4×4, K2 ∈ R

4×2, K3 ∈ R
2×4, K4 ∈ R

2×2. Let

K1 =




0 −5 0 0

5 0 0 0

0 0 0 −10

0 0 10 0




(34)

to assign zeros to{±5j,±10j}.

step 3.Set the desired regions of poles are: (a) their real parts areless than−1, and (b) their imaginary

parts are close to real axis as much as possible. The reason for (b) is that, if the pole is on real axis

without imaginary part, its effects on imaginary frequencies may be reduced. An equivalent statement

was presented inRemark 7.

step 4.Set the initial values ofK2,K3,K4 randomly and use the algorithmfmincon()(by Optimization
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Toolbox in Matlab). The optimal solution is

K2 =




0.0727 3.7092

2.5856 −5.3730

−0.2838 5.2500

−6.2984 0.0765




,

K3 =


 1.7224 −4.5248 −27.1796 6.0431

−3.5649 −12.4087 −7.2836 −8.8425


 ,

K4 =


 18.5227 −5.0874

5.9855 16.4604




(36)

which gives the resulting dynamic filter

Ã =




−19.47 5.248 −1.72 4.523 27.18 −6.04

−2.042 −19.7 3.565 12.41 7.284 8.843

0.072 3.709 0 −5 0 0

2.586 −5.373 5 0 0 0

−0.284 5.250 0 0 0 −10

−6.298 0.077 0 0 10 0




B̃d = B̃f =




86.794 40.312

154.691 81.275

0 0

0 0

0 0

0 0




C̃ =


 1 0 0 0 0 0

0 1 0 0 0 0


 , D̃d = 0, D̃f = 0

(37)

And the six poles of the dynamic filter are:

{−16.8934, −15.8096, −3.4574 − 1.0 ± 0.2617j, −1.0} (38)

As discussed before, since the disturbance(fault) distribution matricesBd = Bf = B, the TFMsG̃f (s),

G̃d(s) are identical, as shown in equation (35).

It is easy to verify that the normal rank of TFM (35) is 2 and it reduces to 1 whens = {±5j,±10j}.

Therefore, the disturbance zeros of TFM (35) are{±5j,±10j} which is consistent with Theorem 3.1.
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For fair comparison to the conventional static filter, aH∞/H∞ static filterL1 is designed by taking

use of weighting functions. Since the zeros are of interest,the effects of different poles should be reduced

as much as possible. Hence, the pole regions are restricted to the similar area as the dynamic filter. The

resultingH∞/H∞ filter gain matrix is

L1 =


 4.0827 −3.8591

7.9752 −6.2600


 (39)

which gives the filter poles at−1.0 ± 0.0082j.

A static filter is also designed by usingplace() function provided by Matlab which gives the static

gain matrix

L2 =


 0.0574 −0.1016

4.2056 −2.2347


 (40)

with poles at−1.0 ± 0.2617j. Note that, because the static filters do not change the system order, they

have only two poles. These two poles{−1.0 ± 0.2617j} are selected as the desired poles forplace(),

because they are dominant poles in the dynamic filter.

The magnitude responses ofG̃f (s) andG̃d(s) of these 3 filters are depicted in Fig. 4. It can be seen that,
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Fig. 4. Magnitude responses of the TFMseGf (s) and eGd(s) in dynamic filter (solid), static filterL1 (dashed) andL2 (dash-dot).

Note that, eGd(s) and eGf (s) are identical, becauseBd = Bf , Dd = Df .

compared to those of static filters, the dynamic filter has dips around the disturbance frequencies in the

magnitude response. These dips contribute the improvementon attenuating the band-limited disturbances.

Furthermore, in the dynamic filter, the magnitude around zero frequency (where the main components

of the fault are) is greater than that of static filters, whichenhances the effects of the fault in residuals.
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A. Residuals without fault

In this simulation, no fault happens. Fig. 5 shows the norms of r(t)dyn, r(t)L1 and r(t)L2, which

are the residuals of our dynamic filter{K1,K2,K3,K4}, the static filterL1 and L2, respectively. It

can be seen that‖r(t)‖dyn has a large overshoot at the beginning due to the transient process of the

dynamic filter. In the steady state, the disturbance attenuation in dynamic filter is more significant than

that of L1, L2. In the steady state, the maximum magnitude of‖r(t)‖dyn is below than 8, however that

of ‖r(t)‖L1, ‖r(t)‖L2 is nearly 20. A comparison has also been made between the proposed method

and the classic disturbance estimation method [2] (denotedby L3) as shown in Figure 5, where the 4th

subplot||r(t)||L3 shows the residual response of the disturbance estimation method. It can be seen that

their maximum magnitude are similar. However, our method gives a smaller standard deviation which is

defined as follows.
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   STD=4.5276
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    STD=1.5104

RMSE=7.2380
STD=4.1867

RMSE=2.6192
STD=1.9764

Fig. 5. Fault free residuals corresponding to the dynamic filter , the H∞/H∞ filter L1, static filter L2 and disturbance

estimation approachL3, respectively.

The disturbance attenuation performance is also evaluatedin terms of the root mean square error

(RMSE) and the standard deviation (STD):

RMSE = E{‖y(t) − ŷ(t)‖} = E{‖r(t)‖}

STD =
√

E{(‖r(t)‖ − RMSE)2}
(41)

where‖y‖ denotes a vector norm
√∑

i |yi|2 andE{} denotes the mathematical expectation. The RMSE/STD

values are also shown in Fig. 5.
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B. Residuals of abrupt actuator faults

In order to simulate the happenings of two successive abruptactuator faults at two input channels

respectively, the fault function is represented asfa(t) = [f1(t) f2(t)]
T and

f1(t) =





0 (t < 20)

0.05 (t > 20)
f2(t) =





0 (t < 30)

0.05 (t > 30)
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Fig. 6. Residuals of the dynamic filter,H∞/H∞ filter L1 and static filterL2 in the case of two abrupt actuator faults at 20s

and 30s, respectively

The residuals of the dynamic filter, static filterL1 andL2, disturbance estimation are depicted in Fig.

6, where two step increases in‖r(t)‖dyn can be seen clearly within 1 second after each fault occurs. The

filters L1 andL2, however, fail to detect such abrupt faults. Although the peak values of the residuals

of these static filters present step increases, there is no clear interval between the normal residuals and

faulty residuals. Therefore, missed alarms may exist.

C. Residuals of an incipient actuator faults

In this trial, the gradual fault injected to the input signalis fa(t) = [f1(t) f2(t)]
T and

f1(t) =





0 (t < 20)

0.0025(t − 20) (k > 20)
; f2(t) = 0 (42)

and the corresponding residuals are shown in Fig. 7.

To illustrate the fault detection performance, the plant outputs under such a fault are also plotted in

Fig. 7. Due to the large output values and the small fault size, the changes in the outputs is difficult to

September 22, 2008 DRAFT



REVISED PAPER FOR IEEE TRANS. ON SIGNAL PROCESSING, FEB 27 2008 20

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350
System outputs under the incipient actuator fault

S
ha

ft 
S

pe
ed

s 
(R

P
M

)

Time (second)

y
2
(t)

y
1
(t)

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140
Residuals of the incipient actuator fault

M
ag

ni
tu

de

Time (second)

 

 

||r(t)||
dyn

||r(t)||
L1

||r(t)||
L2

||r(t)||
L3

Fig. 7. Plant outputs and residuals under an incipient actuator fault at the first input channel. The actuator fault occurs at 20

second with slope rate 0.005

find. However, this fault can be detected clearly from the dynamic filter residuals.‖r(t)‖dyn responses

the incipient fault (42) with a fairly straight line increasing at about4 units per second. Whereas‖r(t)‖L1

is with significant disturbances and its increase rate is only 0.7 unit per second. This comparison verifies

that the dynamic filter is able to detect smaller gradual fault earlier and avoid missed alarm as much as

possible.

A comparison between the proposed method and the classic disturbance estimation based method as

shown in Figure 6-7, where the||r(t)||L3 line represents the residual response of disturbance estimation

method. As the magnitude of the residual of the proposed method (see||r(t)||dyn) is larger than that of

||r(t)||L3
after the fault occurs, it can be concluded that the proposedmethod is more sensitive to the

fault and is therefore better in terms of fault detection performance.

VI. CONCLUSION

In this paper, a systematic study of the dynamic filter’s zeros is presented. The properties of the

proposed dynamic filter are analyzed and its capacities for fault detection are illustrated in simulations.
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The possibility of zeros assignment in dynamic filter designare given and proved.

The proposed dynamic filter differs from the classical static filter (and Kalman Filter) whose gain

matrix is a constant coefficient matrix. A dynamic gain is introduced into the dynamic filter design. and

it is proved that a dynamic filter introduces additional zeros and shifts the system poles fromeig(A)

to eig(Ã). Although this technique increases system order and complexity, it brings more freedom for

filter design. In the proposed dynamic filter design approach, the additional degrees of design freedom

are used to assign the additional zeros to desired places forattenuating disturbances further.

In the application, low frequency disturbances (5 rad/sec)need to be attenuated and the detection of

both the actuator and sensor faults is required. Simulationresults have shown that the proposed zeros

assignment method comes with reasonably good disturbance attenuation. Hence, we are able, on one

side, to formulate and get a better filter in the sense of robustness and disturbance rejection, and, on the

other side, to obtain new insight into the filter construction for fault detection.
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